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Multiparticle S-matrix elements of the type Ny-Nyy, Nyy-Nyl' are calculated in the tree
approximation, in a field theory of spin-! "nucleons" (N) and spin -1 massive "photons" ("I)
coupled to the conserved nucleon current. After projecting out the positive-parity amplitude,
the asymptotic behavior is found to be consistent with a Reggeized nucleon. The double-Regge-
pole limit of Ny-Nyy also indicates a Reggeized nucleon, and the residues factor. The meth-
od can be extended to S-matrix elements with arbitrary numbers of photons.

The possibility of elementary particles of con-
ventional field theory lying on Regge trajectories
was first investigated by Gell-Mann et al.1 for
various classes of field theories. In particular,
the theory of spin-! "nucleons" (N) coupled to
spin-1 massive "photons" (1') through a conserved
current was found to yield a Hegge trajectory on
which the nucleon lies. This was shown by calcu-
lating the yN- yNamplitude of definite (positive)
parity up to sixth order and finding Regge asympto-
tic behavior.

However, consistent Reggeization requires that
the Regge pole be present in all S-matrix elements
which contain channels with the quantum numbers
of the nucleon, for example, the multiparticle
channels Ny, Nn, Nyn, etc. The multiparticle
amplitudes have not previously been studied in
connection with Reggeization, and in this paper we
examine the five- and six-point amplitudes Ny
- NyI' and Nn- NyI' in the tree-diagram approxi-
mation, testing for Regge asymptotic behavior
with fully factored residues.

External spin causes two immediate complica-
tions. First, the kinematic singularities of multi-
particle amplitudes are not understood .. Second,
due to the MacDowell symmetry, there are two
opposite-parity Regge poles

a%(W)=!+g2f(±W)" •

which are degenerate at the tree-approximation
level. To han!fle these complications, we work
directly with invariant Feynman amplitudes, mak-
ing no effort to extract kinematic singularities.
The Feynman amplitudes should exhibit Regge-
pole factorization in the asymptotic limit. Because
of parity doubling it is necessary to isolate posi-
tive-parity amplitudes, before an asymptotic limit
with a factored Regge nucleon can be expected.

This forces us to work in the time like region of the
total four-momentum carried by the Regge pole,
where parity is a "good" quantum number, and
where the "natural" partial-wave development is
in terms of 0(3) harmonics. Our method is to
parametrize the amplitudes with 0(3) group vari-
ables/ project out positive parity in the center-of-
mass frame, and take the unphysical asymptotic
limit of large cosine to test for Regge behavior.
Were it not for parity doubling, an approach based
on the 0(2,1) group for spacelike Reggeon momen-
tum, would probably be simpler; but it is awkward
to project out definite parity in the 0(2, 1) develop-
ment, because parity does not leave a spacelike
vector invariant.

The program is therefore as follows: (a) Look
for Regge poles in the Ny- Ny case, and identify
the factored residues which describe the coupling
Ny- Reggeon. (b) Look for the same Regge pole
in the Ny- NyI' case, and see if the residues factor.
One of these factors should be the same as found
in (a), while the other should describe the coupling
Nyy- Reggeon. (c) Similarly investigate the NyI'
- Nn case. Both factors describe Nyy- Reggeon
coupling, and should be the same as found in (b).
(d) Study the double Regge limit of Ny- NyI', which
should contain the same Regge pole twice, and in
which two of the factored residues should corre-
spond to Ny- Reggeon coupling. The third factor
corresponds to Reggeon-Reggeon-y coupling. If
this program can be followed through consistently,
then we have established the Reggeization of the
nucleon for a subset of multiparticle S-matrix ele-
ments in lowest order.

We consider the scattering 'of "nucleons" (spin !,
mass m) and "photons" (spin 1, mass 0) coupled
through a conserved nucleon current.



The particles are divided into "in" and "out"
clusters (Fig. 1) and the amplitude calculated in
their center-of-mass frame.2 Standard frames
for each cluster are defined. For the in cluster,
the momenta in the standard frame are (standard-
frame quantities are indexed by a zero):

p~O)=(E, 0, 0, -q), k~O)= (w, 0,0, q), .

S = (PI +k1)2 =W2,

q=6.1!2(W2,m2, A2)/2lv,

6.(x, y, z) = x2 + y2 +Z2 - 2xy - 2yz - 2zx.

(2.1)

(2.2)

(2.3)

(2.4)

The standard frame for the out cluster is defined
analogously. The two frames are connected by an
element of the little group of P= PI +k1 = (W,0)
which is a rotation specified by the Euler angles
')"2' !3,Yl' The rotations Y2' Yl are around the z axes
of the out and in standard frames and do not change
the momenta, and only introduce phase factors
through the wave functions, and may be ignored.
Hence, quite generally, we can choose the follow-
ing frame to calculate the amplitude:

PI = (E, -q sin!3,0, -q cos(3),

k1 =(w, qsin!3, 0, qcos(3),

P2 = (E, 0, 0, -q), k2 = (w, 0,0, q).

The spinors and polarization vectors correspond-
ing to the helicities T,Aare, in the standard frame,

(
E+m)ll2( X~~u (0) - --r(JJl)- 2m ~ (0)

E+m X-r
where

where we have used current conservation to elim-
inate the time component of E(k). The follOWing
gauge simplifies calculations 1:

(0) (1)
X+l/2= ° ' .(0) _ (0)

X-I/2- 1 '

(2.9)

(2.10)

where A is any vector which is not rotated through
the angle!3, (e.g., P2, k2) and B is any vector
which is rotated through the angle !3, (e.g., PI> kI).
With this choice of gauge, as

z=cosf3-oo,

we find3

FIG. 1. (a) Momenta and polarizations of particles
involved; (b) separation into "out" and "in" clusters.

E1 • r1Z~~const,

Et· r2Z~~const,
and the contributions of "crossed" diagrams van-
ish compared to those of the "uncrossed" dia-
grams3 (Fig. 2).

Hence, the amplitude is, in lowest order, given
by

(2.12)
To obtain the amplitude for scattering through

the positive-parity channel, we introduce the pro-
jection operator !(1 +IT), where IT is the parity op-
erator acting on the in state, which takes u(P1)
- yOu(p1) and PI- PI = (E, -PI)' etc:

Et· r2.[ [yo E: - y ·k2(B °Et!B· k2)]-Et· rz,
(2.13)

E1' r]U(Pl) .[ [-y 0 E] +y .k·I(A . E/A . k1)]yOU(Pl)

.•~~ yOE1 0 r1u(PI)' (2.14)

Hence,

T(+) ••~oogZU(P2)E: 0 rz(WyO - m)-Il(1 +yO)E] . r1u(PI).

(2.15)
But

!(1+y°)El 0 rIU(PI)

= ~(1+ yO)e-i( Blz)oy ( y 0 E~) _ y' k~O):: :~ )u(p~O»

_ 1-(1+ yO)e-i(BIZ)oy (Y' E(o) _ y' k(o) 10\°)· a )u(P(O»
••~ ~ 2 I , 1 k\O)' aI'
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This reduces to P2 k2 P2 k2

. (X>,<,cW»)
t(1 + yO)E1 • r1U(Pl) z-Z«> e-'( BI2)oy . 0 '

(2.18)
where

E-m-w C)
Xl!(W)= [4m(E-m)]112 0 '

-A (0) (2.19)XOt(W)= [2m(E- m)]1/2 1 '

W-m C) PI kl PI kl

X-1t(W)= [4m(E- m)]112 0 . (0 ) (b)

FIG.2. (a) The uncrossed graph;

Similarly,
(b) the crossed graph.

Hence, finally,

T~+) , - g2Xt (W)(W - m)-le-HB/2)Oyx, (W)
"272 • "ITl z-~ "272 "IT 1

z-Z«>g2f.lt2T2(W)f.lAI71(W)(W - m)-I(!z)l/2,

(2.21)

The asymptotic behavior due to a single Regge
pole O'(s) is given by

-llT(1 +20') ex( )
TAsA4.AIA2(S, t)zs~oo sin7T(O'-t) YS4(S)YI2(S)dA~ (Zs)

Using the property
'A

d~ll(z)z-z«>[r(a + A+ 1)~(O' - A +1)]1/2

X i -1l(!Z)"
[r(a + tJ. + l)r(a - tJ. + 1»)1/2,

and absorbing the factors in (2.24) into the functions
YS4 and Y12' we have

( Y:4(S )'Yx2(S) 1 ,,(s)
TS4•12 s, t) z-Zoosin7T(a_!) <:?;z) •

Using the lowest-order form for the trajectory

(2.27)
Comparing (2.27) and (2.21), we find that the Born
approximation is consistent with Regge behavior,
o'(s)-! as g2_ 0, as found in (1). However, in (1)
the factors (v'2 costf.l)-I A+ III and (v'2 sin!f.l)-I A-Ill

were extracted while defining definite-parity am-
plitudes. In our treatment, these factors have not
been extracted, so that all the amplitudes (sense-
sense, sense-nonsense, nonsense-nonsense) go
as zll2.

III. THE AMPLITUDE Ny ...•NTI
AND ITS SINGLE REGGE LIMIT

In this case, the standard frame for the in cluster
(Fig. 3) Plkl is the same as in Sec. II. The standard
frame for the out cluster is specified below:

p~)= (E2, 0,0, - tf~~),

l~) = (w2, l~, 0, l~~),

l~)= (ws, -l~, 0, p~o;-l~~),

(3.1)

(3.2)

(3.3)

and
E2+W2+WS=..fS =W.

As in Sec. II, a rotation about the z axis of the
state IP\O) , k\O» only introduces a phase factor and
may be disregarded. But the rotation about the z
axis of (3.1)-(3.3) changes l~), l~O), and is nontriv-
ial. Hence, we calculate the amplitude in the frame

PI = (E, -q sinf.l,0, -q cosf.l),

k1 = (w, q sinf.l,0, q cosf.l),



where A is an "unrotated" vector and B, B' are
"rotated" vectors. In this gauge, the "uncrossed"
graphs dominate4 (Fig. 4).

Introducing the positive-parity projection opera-
tor, taking the limit z - "", and separating out the
rotation operator which takes P2, 12,13 into the stan-
dard frame, we have

T(+) z":;rog3G~)' (~Z)ll2(W - m)-1~)..17}W), (3.9)

where ~)...•.(W) is the same as in (2.22), and
1 1

P2 = (E2, 0, 0, - p~o2),
12 = Az (-Y2) 'I~O), (3.5)

13 =Az (Y2) 'I~O),

where Az (Y2) is the transformation matrix for z ro-
tation through the angle Y2'

The gauge chosen is

E1·rl=Y·El-y·kl(El'A/kl'A),

1I:'02=Y' TJ:-Y'l2(TJ: .B/l2 'B),

(3.6)

(3.7)

G~' = .~, )[,/~, •• o'~'(y.P:' + Y • l~' - m)-'>!:' .n~'+ 4:" . o'~~y.p~)+ Y • l~' - m)- ,~, •. o'~']e"', ",0, riJ
(3.10)

b =(0, icosh, -isinY2, 1).

The form (3.9) exhibits zl/2 behavior and the pole (W - m)-l.
the same as found in Sec. II. The factor G~) which
depends only on the variables of the out cluster de-
scribes the Reggeon-Nyy coupling.

(3.11)

(3.12)

The standard frames for the ill and out clusters
(Fig. 5) are chosen as in Sec. III for the out cluster.
In this case, both the z rotations ')Iu '>'2 are non-
trivial and must be considered. Thus, the ampli-
tude is calculated in the frame

Ip1k1k2> = Ry(J3)Rz(yt> Ip~)kiD) k~O»,

Ip21;J13)=RAY2) Ip~)l~) l~O»,

PI +k I +k2 = /)2 + 12 + 13 = (W, 0).

(4.1)

(4.2)



FIG. 6. The six classes of diagrams for Nyy-Nyy. The four members in each class are obtained by the in-
dependent interchanges l2-l3; kt-k2. Class-tal graphs are "uncrossed" and dominate in the limit z-oo.

The gauge is again chosen so as to eliminate the crossed diagrams4 as z =cosf3- 00:

Ei· r.=Y·Ei - y·ki(Ai 'EJAi ·ki),

where Ai is an "unrotated" vector (e.g., P2' Z2' Z3) and

T/t •ni= y ~.'lt - Y· Zi(Bi • 11t!Bi 'Z i),

where Bi is a "rotated" vector (e.g., Pl1 kl1 k2).

The 24 possible lowest-order diagrams fall naturally into six classes of four diagrams each (Fig. 6), only
one class of which survives [Fig. 6(a)] in the limit z- 00 (uncrossed type).4 Hence,

T,,-zoog4FA'(WyO-m)-1'FB' (4.5)

where

FA =U(P2)[I1t·n2(Y· P2+Y'Z2- m)-1T/:·n3 +11: ·n3(Y·P2 +Y'Z3 - m)-lT/: ·n2]

and

The positive-parity projection operator can be introduced as before, and taking the limit z- 00, sepa-
rating out the rotations Yu Y2' we have

T(+) ,,:::00 g4G~)(W - m)-1(~z)l/2G~),

where

G~'= u<P':')[ .c" . nl" (y • !4" + y. l~'- m)-'"~" .Ii:'. ,f:" ·ll~'(y . !4" + y ·l~'- m)·' .c" ·ll~'Ie'''''',", [~1
where T/~O)* ·O~o) are defined in (3.11), and

G~) = (1, -i, 0, O)e-HY1!2)(J,,[E~o).r~) (y. AO)+ Y' kin) - m)-lEiO).ria) +EiO).r\O)(y.p\o)+ Y' k~O)- m)-lE~)' r~)] u(piO),

where

E~O).r~O)=Y . E~O)- yo k~O)(E~O).c/k~O). c), (4.11)

c = (0, -i cosYl>i sinyu 1). (4.12)

The form (4.8) shows Zl!2behavior, the pole (W - m)-l, and two factors G~), G~), which depend only on
their cluster variables, and are identical in form (except for complex conjugation) with (3.12). This shows
that the logical circle of factorization closes, and that the coupling Reggeon - Nyy can be consistently and
uniquely identified.



The form of the amplitude obtained in Sec. III can
be further investigated for Regge behavior and fac-
torization, by subdividing the out cluster (Fig. 7).
The frame is specified in more detail for this pur-
pose.

In frame 1 (used in Sec. ill)

PI +kl =(W, 0),
!PIkl)=R/f3) IPiO) k~O) •

A boost along the z axis of magnitude ~ takes
frame 1 to frame 2 (where quantities are primed),
the center-of-mass frame of the P-z, 12 cluster:

P~+k; =P'=(Wcosh~, 0, 0, Wsinh~),

l~ = [(i\2 +W2sinh2~)1/2=w~, 0, 0, Wsinh~=q~],

P' + l' - (W cosh t - w' - W' 0)2 2- ':, 3- , ,

kl,EI

FIG. 7. Clusters for the double Regge limit
of Ny-Nyy.

(5.2)

(5.3)

(5.4)

1~= (w~, q' sin{3'cosy', q' sin{3'siny', q' cosi3')

=A.•(y') •Ay(i3') 'l~O\

P~= (E~, -1~),

q'=.o.II2(W'2,m2, i\2)!2W'.

The five independent variables are

with

cosh~= (W2 +W,2 - i\2)!2WW'.

y' can be shown to be the usual Toller angle. 5

In the limit z =cosf3- <Xl, the result of Sec. ill was

T(+) .•:: ~g3G3(tZ)II2(W - m)-lf3).. T (W),
I I

where

G, e u(p,)[,,;' . ll,,(y. Po. +y 'l, - m)-'.!· n, +,,;' 'O,(y' Po. +Y'l, - m)-'"!·ll"J [ ~1
[note that the rotation Y2 has not been extracted in (5.10)].

Using the properties of the boost operator

(

cosh ~~ a.•sinht ~) ,
S3(~) = e"3U2 =

(j.•sinht~ cosht~



'11' .Sl; =y' '11' - y 'lj(1/1' .b'll; .b'),

b ' = (sinh~, i,0, cosh ~).

We now introduce the positive-parity projection operator on the state
and take the limit z' = cos/3'- ao. After some manipulations, we find

T(+'+) z z7~~ g3/3t'T,(W')(~Z')1/2(W' - m)-1rx' <tZ)I/2(W - m)-I/3x T (W),
• 22 3 11

where /3XT is defined in (2.22), and the quantity rX3 is given by

r = -iy'l2[ "'2 inh. .!.t sin~Y' !.W'-m _iY'/2_W-m iY'I2)]
+ 1 e LV •...s 2., + .f2 sinh~~ \ w e W' e ,

(5.13)

(5.14)

r =_ iAsinty'(W +W' - m)
o WW'sinhH'

r = iY'/2[' "'2 inh.!.t- sin~y' (W'-m iY'/2_W-m -iY'I2)l (5.18)
_1 e tv ••..s 2., J2sinh~~ W e W' e 'J

rx(W, W', yl) may be regarded as the Reggeon-Reggeon-photon coupling and is symmetrical with respect
to the variables of the two Reggeons. The dependence of this coupling on the Toller angle has been studied
by Tan and Wang,6who conjecture that 2; x Ir x 12should be independent of y' when either W or W' - O. Our
coupling does not satisfy this conjecture, possibly because of the extra complications in fermion kinemat-
ics.

Reggeization of the nucleon in this model was originally established1 for the two-body process Ny- Ny.
The multibody processes Ny- Nyy and Nyy- Nyy have been shown to have the same Regge pole in the tree-
diagram approximation. The residues factorize and the couplings Ny- Reggeon, Nyy- Reggeon can be
identified. The double Regge limit of .Ny- Nyy also shows the same pole; and an additional coupling Reg-
geon-y-Reggeon can be identified. The method can be generalized to processes with arbitrary number of
photons in the initial and final states. Thus, in the tree-diagram approximation, at least, the generalized
Reggeization of S-matrix elements has been found to be true. However, higher-order calculations of these
multibody S-matrix elements are necessary to bring the proof to the level established for the two-body
process in Ref. 1.

APPENDIX A

Let the vector a(O) be rotated through an angle /3about the yaxis. Then, as cos/3=z-ao,

it z'::; ~ z(a~) + ia~O»(x - iz).

Hence, in general,

a z'::;~- za(io). p),

where

Hence,

E1 • rlZ'::;~yo E1 - Y .kl(E~O). plk~O). p)



and

U 0 [E1- k1(E\O)p!k\O) - p)] "':;00 -Z[E\O)-pu - a - k\O)- pU - ii(E~O)0 p!k\O) 0 p)]

Hence,

E10 ru E: 0 ra,,':;oo const.

The contribution of the crossed graph [Fig. 2(b)] is

Tb -U(Pa)E1 0 r1(y 0 PI - Y ·ka - m)-lE: 0 raU(Pl)

"':;00 (-!P1 ·ka)U(Pa)E1- r1(Y-Pl ~y-ka + m)E: 0 raU(Pl)

,,~ooU(Pa)E10 r1[ (B 0 E:!B 0 ka) - (Pl' E:!P1 0 ka) +O(Z-l)] U(Pl)

,,~oo0(1 )0(1 )O(Z-l )O(Zll2)

".:; 00 O(z-l/a),

B "':;00 -za(p .do»

and we have used the property

(y -PI - m)U(Pl) = O.

APPENDIX B

The diagrams are shown in Fig. 6. The gauge chosen is

Eio ri =y-Ei - y-ki(EioA;/kioA), i=I,2

(A i is an "unrotated" vector)

I1t ·ni = y -1/t- y . Ii (1/;" oB;/li oBi), i = 2,3

(Bi is a "rotated" vector).
The cluster P, kl> ka is regarded as "rotated" with respect to the cluster Pa, la, Is by an angle (3. In

dix A it was shown that as z = cos(3- co, Ei· ri and I1t ·ni- const.
The contribution of a graph of type (a) is typically

Ta-u(Pa)1/: ·na(y 0 Pa+Y'la - m)-I1/: ·nS(yoPl +y-k1 +y·ka - m)-lEa' ra(Y-Pl +y·k1- m)_IE1• rIU(PI)

since
R

y
«(3) = e-i(B/2)oy - Zl 12.

The contribution of a graph of type (b) is

Tb-u(P2)I1: ·na(Y·Pa +Y'12 - mtlEa' ra(y· Pa +Y'la - y·ka - m)-l1/: ·ns(Y· PI +y-k1- m)-lE1- rIU(PI)

,,~oo0(1)0(1)0(1)0(1) {[(1/: 0 p/ls 0 PI) - (11: . (PI +k1)/ls . (PI +k1» +O(Z-l)](y. PI +y' kl - m)-l

+O(Z-l) '11: ·ns(Y· PI + y ·kl - yo Is - m)(y· PI + Y 0 kl - m)-I} e-HB/a)oY(EI. rl)OU(p~»

Similarly the graphs of class (c), (d), (e), and (f) may all be shown to go as z-1/2, at least compared to
zl/a for class-(a) graphs.



APPENDIX C

We refer to Fig. 7. The Toller angle wt, is defined by

[
(i2XP2)'(kIXPI)]

coswt=- It - 11- - I
2 XP2 ki XPI rest frame of l3

[
poQ ]

= + ,J - P 2 ,J - Q2 arbitrary frame ,

pfl = E flUAO l2JjP2).l30'

Qfl = EflUAokwPIAl30.

In the frame 2, the vectors k~,P~, l~, l~, P~ are

k~= (w cosh~ +qcosj3sinh~, q sinj3,0, qcosj3cosh~ +w sinhn,

P~= (E cosh ~- q cosj3sinh~, -q sinj3,0, -q cosj3cosh ~+E sinh ~),

l~=(w~, 0, 0, Wsinh~),

P~= (E~, -q'sinj3'cosy', -q'sin/3'siny', -q'cos/3'),

l~ = (w~,q'sin/3'cosy', q'sin/3'siny', q'cos{3').

Then the vectors P and Q are easily found to be

p= (0, q'WW'sinh~ sin/3'siny', -qWW'sinh~ sin{3'cosy', 0),

Q = (0,0, -qW W'sinh~sin13,0),

which gives
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